
Computer Vision and Image Understanding 161 (2017) 114–129 

Contents lists available at ScienceDirect 

Computer Vision and Image Understanding 

journal homepage: www.elsevier.com/locate/cviu 

SPORE: Staged Probabilistic Regression for Hand Orientation Inference 

Muhammad Asad 

∗, Greg Slabaugh 

Department of Computer Science, City University London, UK 

a r t i c l e i n f o 

Article history: 

Received 29 September 2016 

Revised 17 May 2017 

Accepted 20 May 2017 

Available online 22 May 2017 

Keywords: 

Hand orientation 

Regression 

Probabilistic 

Hand pose 

a b s t r a c t 

Learning the global hand orientation from 2D monocular images is a challenging task, as the projected 

hand shape is affected by a number of variations. These include inter-person hand shape and size vari- 

ations, intra-person pose and style variations and self-occlusion due to varying hand orientation. Given 

a hand orientation dataset containing these variations, a single regressor proves to be limited for learn- 

ing the mapping of hand silhouette images onto the orientation angles. We address this by proposing 

a staged probabilistic regressor (SPORE) which consists of multiple expert regressors, each one learning 

a subset of variations from the dataset. Inspired by Boosting, the novelty of our method comes from 

the staged probabilistic learning, where each stage consists of training and adding an expert regressor 

to the intermediate ensemble of expert regressors. Unlike Boosting, we marginalize the posterior pre- 

diction probabilities from each expert regressor by learning a marginalization weights regressor, where 

the weights are extracted during training using a Kullback–Leibler divergence-based optimization. We 

extend and evaluate our proposed framework for inferring hand orientation and pose simultaneously. In 

comparison to the state-of-the-art of hand orientation inference, multi-layered Random Forest marginal- 

ization and Boosting, our proposed method proves to be more accurate. Moreover, experimental results 

reveal that simultaneously learning hand orientation and pose from 2D monocular images significantly 

improves the pose classification performance. 

© 2017 Elsevier Inc. All rights reserved. 
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1. Introduction 

Over recent years, real-time depth cameras have facilitated

the introduction of a range of novel natural interaction methods

( Han et al., 2013; Supancic et al., 2015 ). Depth maps from such

cameras have been widely used in research that solves hand

pose estimation under challenging settings ( Keskin et al., 2012;

Oikonomidis et al., 2011a; Tang et al., 2013; Taylor et al., 2016 ).

While depth cameras are proving to be of great significance for

addressing the hand pose inference problem, these cameras are

not widely available on mobile devices due to the considerations

of power consumption, cost and form-factor ( Fanello et al., 2014 ).

Technologies like Google’s Project Tango 1 and Pelican Imaging 2 

show the recent focus on miniaturizing the depth sensors for

mobile devices. However, the need for a custom sensor with com-

plex electronics, high-power illumination and physical constraints,

such as baseline between illumination and sensor, limit the use of

such devices, especially when compared to 2D monocular cameras

( Fanello et al., 2014 ). In contrast, 2D monocular cameras are
∗ Corresponding author. 
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eadily available in the majority of the mobile devices. Therefore,

ethods that utilize 2D monocular images to infer characteristics

f the hand, such as hand orientation and pose, in new ways can

ignificantly contribute towards novel interaction on these devices.

The human hand is an effective interaction tool due to its

exterous functionality in communication and manipulation ( Erol

t al., 2007 ). For this reason, the problem of estimating hand

ose has attracted a lot of research interest ( Keskin et al., 2012;

berweger et al., 2015b; Sun et al., 2015; Tang et al., 2013 ). De-

pite the recent progress in this field, limited attention has been

iven to study the effects of hand orientation variations on hand

ose inference ( Supancic et al., 2015 ). In this paper, we propose a

ethod for inferring hand orientation for planar hand poses using

D monocular images of the hand. Furthermore, we show that

imultaneously learning from hand orientation and pose signifi-

antly improves the pose classification performance. We note that

he proposed hand orientation inference method can benefit the

xisting model-based hand pose estimation methods that optimize

gainst global hand orientation and pose ( de La Gorce et al.,

011; de La Gorce and Paragios, 2010 ). Furthermore, when used in

ugmented Reality applications, the inferred hand orientation can

rovide the user direct control of the orientation of augmented

bjects ( Asad and Slabaugh, 2014 ). 

http://dx.doi.org/10.1016/j.cviu.2017.05.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2017.05.009&domain=pdf
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Fig. 1. Movements in the wrist and forearm used to define hand orientation shows 

flexion and extension of the wrist and supination and pronation of the forearm. 
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We observe that the changing orientation of the hand induces

hanges in the projected hand shape in 2D monocular images. We

herefore utilize contour-based features in our work as these fea-

ures encode the geometric hand shape variations that directly cor-

espond to changes in orientation of the hand ( Asad and Slabaugh,

014 ). Similar features have been previously used for hand shape-

ased gesture recognition ( Ren et al., 2013 ) and person recognition

 Yoruk et al., 2006 ). As we will show in this paper, these features

lso prove sufficient for jointly learning hand orientation and pose.

oreover, we note that the hand contour is more robust to scene

llumination than intensity and compactly encodes (as a 1D signal)

he hand’s global orientation unlike local feature descriptors like

exture, shape context, or SIFT ( Lowe, 2004 ). In such cases, a

odel that learns the relationship between contour-based features

nd the orientation angles would contribute towards understand-

ng and using different hand postures. Furthermore, the projected

and shape is affected by a number of variations, which include

nter-person hand shape and size variations, intra-person pose and

tyle variations and self-occlusion due to varying hand orientation.

In this paper, we present a staged probabilistic regressor

SPORE) which consists of an ensemble of expert regressors, each

ne learning a subset of variations from the dataset. We use

PORE to address the inference of hand orientation angles, result-

ng from flexion/extension of the wrist and pronation/supination

f the forearm measured along the azimuth and elevation axes

as shown in Fig. 1 ). SPORE learns the mapping of contour-based

eatures, extracted from 2D monocular images, onto the corre-

ponding hand orientation angles. The expert regressors in SPORE

re trained, using the contour-based features, and added to the

nsemble in stages forming an intermediate model. Evaluation

f the intermediate model, using training samples, reveals a

atent variable space. This latent variable space defines a subset

f training data that the existing regressors have difficulty in

earning from. This subset is used to train and add the next expert

egressor. Each expert regressor gives a posterior probability for

ssigning a given latent variable to the training samples. These

osterior probabilities are used along with the ground truth (GT)

rior probability to estimate marginalization weights, which are

sed in the intermediate model to combine the ensemble of ex-

ert regressors. After training all stages, a marginalization weights

egressor is trained that learns the mapping of hand contour-based

eatures onto marginalization weights. Given an input hand sil-

ouette image, we first extract a contour-based feature vector. This

s followed by online prediction which involves using the feature

ector to infer the marginalization weights for marginalizing the

redicted posterior probabilities from each expert regressor. 

.1. Contributions 

Our main contribution comes from the staged probabilistic

earning, where we let the intermediate model define the subsets

f data used for training the next stage. This has a two-fold con-

ribution to the existing work in Asad and Slabaugh (2016) where
re-defined latent variables were used for defining the subsets of

he data. First, it uses the relationship of difficult to understand

atent variables for defining the subset, enabling its application

o potentially any machine learning problem where easily defined

ubsets of the training data do not exist. Secondly, in cases where

atasets are small and dividing them into subsets can result in

hallow under fitting regressors, our proposed staged learning

ethod is capable of defining latent variables with overlapping

oundaries ensuring complete training of expert regressors. We

urther extend and demonstrate the applicability of the proposed

ethod for simultaneously inferring hand orientation and pose.

urthermore, we are the first to show that a method which

imultaneously learns hand orientation and pose from 2D images

utperforms a pose only classifier as it is able to better reason the

ariations in pose induced due to the viewpoint changes. 

The outline of this paper is as follows. Section 2 presents the

elated work, while Section 3 details the problem definition and

ection 4 outlines the assumptions undertaken. Our proposed

taged probabilistic regressor is presented in Section 5 and the

xperimental results with discussion are presented in Section 6 .

inally, Section 7 concludes the paper. 

. Related work 

This section presents a review of the previous methods in-

olving hand orientation and pose estimation. We include the

eview of hand pose estimation methods as these could be related

o single-shot hand orientation estimation, where some of these

ethods also exploit the quantized orientation of the hand ( Tang

t al., 2013 ). However, accurate hand orientation estimation is

ddressed only by a few methods ( Asad and Slabaugh, 2014; Lee

nd Höllerer, 2007; Mizuchi et al., 2013 ). To achieve their goals,

esearchers have employed different modes of input data, includ-

ng colored gloves, color and depth images ( Erol et al., 2007 ). Our

roposed SPORE method falls in the category of RGB images as

e utilize color images of hands along with the corresponding

rientation angles for both training and prediction. The following

ections present a brief overview of generative, discriminative and

ybrid hand pose estimation methods. This is followed by the

resentation of existing work on hand orientation inference. We

hen present the related methods that utilize marginalization of

ulti-layered Random Forest (ML-RF). 

.1. Generative methods 

Generative methods use a model-based approach to address

he problem of hand pose estimation. By optimizing the param-

ters of a hand model to the input hand image, these methods

an simultaneously estimate the articulated hand orientation and

ose. A major limitation of 2D monocular cameras is that the

rojected 2D image loses vital depth information, which gives

ise to an ambiguity where it becomes difficult to differentiate

ultiple postures with similar 2D image projections. Generative

ethods are capable of addressing this ambiguity in a 2D image

y utilizing a fully articulated 3D hand model ( de La Gorce et al.,

011; de La Gorce and Paragios, 2010 ). de La Gorce et al. (2011) op-

imized the texture, illumination and articulations of a 3D hand

odel to estimate hand orientation and pose from an input 2D

and image. A similar method was proposed in de La Gorce and

aragios (2010) , where generative models for both the hand and

he background pixels were jointly used for image segmentation

nd hand pose estimation. Some of the recent generative methods

lso utilized depth images and advanced optimization techniques

uch as particle swarm optimization (PSO) ( Oikonomidis et al.,

011a; 2011b; Sharp et al., 2015 ). The multi-camera based genera-

ive method in Oikonomidis et al. (2011b ) recovered hand postures

n the presence of occlusion from interaction with physical objects.
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Although these generative techniques are capable of estimating

the underlying articulations corresponding to each hand posture,

they are affected by the drifting problem ( de La Gorce et al.,

2011; de La Gorce and Paragios, 2010; Oikonomidis et al., 2011a;

2011b ). As the performance depends on pose estimation from

previous frames, predicted poses may drift away from GT when

error accumulates over time ( Tang et al., 2013 ). Furthermore,

such methods rely on initialization, where an initial static hand

orientation and pose is used. Moreover, optimizing the parameters

with up to 27 degrees of freedom (DOF) for 3D hand models is

computationally expensive because of the vast search space ( Erol

et al., 2007 ), and in some cases requires implementation on a GPU

to achieve close to real-time execution ( Oikonomidis et al., 2011a ).

These methods can benefit from a single-shot hand orientation

and pose estimation method that can be used for initialization

as well as to correct the drift in error. We note that some recent

hybrid approaches described in Section 2.3 address the drifting

error by re-initializing the generative approach using single-shot

hand orientation and pose estimation. 

2.2. Discriminative methods 

These methods are based on learning techniques and are able

to learn the mapping from the feature space to target parameter

space. Their ability to infer a given parameter from a single input

image ( Shotton et al., 2013 ) has been a major factor in their re-

cent popularity. Furthermore, these methods are computationally

lightweight as compared to generative approaches ( Rosales and

Sclaroff, 2006 ). 

A number of discriminative methods have been previously pro-

posed to estimate hand pose ( Keskin et al., 2012; 2013; Tang et al.,

2013; Wang and Popovi ́c, 2009 ). Wang and Popovi ́c (2009) used

nearest neighbor search to infer hand pose from 2D monocular im-

ages. The approach relied on a colored glove and a large synthetic

dataset of hand poses. In Keskin et al. (2013) , a Random Forest

classifier was trained on a large dataset of labeled synthetic depth

images to estimate the hand pose. Keskin et al. (2012) showed

that the performance of the method in Keskin et al. (2013) can

be improved by dividing the dataset into clusters and using the

ML-RF classification. Tang et al. (2014) exploited the hierarchical

relationship of different hand joints by using a divide-and-conquer

strategy. This method built a topological model of the hand where

the global kinematic constraints were implicitly learned. They

also collected a dataset of 10 users performing various random

hand postures, which they used to train and test their topological

model. Sun et al. (2015) also exploited the hierarchical relationship

between different parts of the hand to train a cascaded regressor.

They argued that the hand shape undergoes large variations due to

changes in the viewpoint and finger articulations. They addressed

this issue by presenting a 3D pixel parameterization that achieved

better invariance to 3D viewpoint changes. A major challenge

faced by methods relying on synthetic datasets are their lack of

generalization for unseen data. Tang et al. (2013) addressed this is-

sue by proposing a semi-supervised transductive Regression Forest

for articulated hand pose estimation. This approach learned hand

pose from a combination of the synthetic and realistic datasets of

depth images. In Shotton et al. (2013) , generalization for human

body pose was addressed by incorporating real scenario-based

variations into the synthetic data generation method. 

Recent interest in Convolutional Neural Networks (CNN) has

also been expressed in some discriminative hand pose estimation

methods ( Ge et al., 2016; Oberweger et al., 2015a; Tompson et al.,

2014 ). Tompson et al. (2014) localized joints using CNN. They

generated single-view heatmaps for joints localization using depth

images as input. Ge et al. (2016) extended Tompson et al. (2014) to

utilize multi-view CNN. A query depth image of the hand was
rst projected onto three orthogonal planes to produce multi-view

rojections. Three CNNs were then trained to infer the heatmaps

f different joint locations in each projection. The inferred multi-

iew heatmaps were fused together to produce the final 3D hand

ose. Oberweger et al. (2015a ) explored different CNN architec-

ures for articulated hand pose inference. They achieved this by

earning the mapping of depth images onto the 3D joint locations.

 regression-based joint-specific refinement stage was introduced

o improve the localization accuracy. 

Apart from Tang et al. (2013) , most existing discriminative hand

ose estimation methods do not utilize hand orientation infor-

ation. As we will show in this paper, hand orientations provide

mportant information about variations induced in the projected

D hand pose image due to viewpoint changes and can contribute

owards improving the performance of hand pose classification. 

.3. Hybrid methods 

Recent literature has seen interest in utilizing a hybrid ap-

roach, that combines generative and discriminative methods

 Oberweger et al., 2015b; Poier et al., 2015; Sharp et al., 2015;

aylor et al., 2016; Tompson et al., 2014 ). These methods utilize

he one-shot pose estimation capability of discriminative models

o make generative models robust to tracking failures and drift-

ng errors. Moreover, the generative method imposes kinematic

onstraints resulting in realistically accurate descriptions of an

rticulated hand pose. 

Xu and Cheng (2013) took a three-step approach where they

earned from a synthetic dataset of depth images. This method

rst estimated the in-plane orientation and 3D location of the

ottom of the hand. The orientation information was then used to

orrect for in-plane rotation of the input data, where depth-based

ifference f eatures were utilized to infer a number of candidate

ostures of hand. These candidate postures were used in a gen-

rative model to infer the final detailed hand pose. The resulting

ethod turned out to be computationally expensive and was

nly able to generalize under in-plane rotations for a single user.

ompson et al. (2014) used a CNN for feature extraction and to

nfer heatmaps for localizing joints. The heatmaps were used along

ith inverse kinematics to estimate the hand pose. This approach,

owever, was limited by prediction of 2D joint locations, and

ts reliance on depth maps for determining the third coordinate,

hich is unavailable for occluded joints. Oberweger et al. (2015b )

roposed a data-driven approach to estimate 3D hand poses from

epth images. This method utilized a CNN for estimating the initial

oint locations from a depth image of the hand. They replaced the

enerative model with a feedback loop implemented using CNN

nd trained to synthesize depth images from inferred joint loca-

ions. Sharp et al. (2015) utilized a discriminative re-initializer for

ptimizing PSO. A similar approach was proposed in Taylor et al.

2016) for hand tracking using non-linear optimization methods. 

All of the emerging hybrid methods require a large dataset for

earning the discriminative part, while still relying on computa-

ional resources to perform generative optimization. Owing to the

omplexity, such methods have not been deployed or tested on

obile devices. 

.4. Orientation estimation 

A limited number of methods exist in the literature that esti-

ate hand orientation ( Asad and Slabaugh, 2014; Lee and Höllerer,

007; Mizuchi et al., 2013 ). Most of these methods use camera

alibration and hand features to build a relationship between

amera pose and hand orientation. These methods do not address

he generalization problem and hence require a calibration step

or every new user and camera setup. 
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To the best of our knowledge, image-based hand orientation

egression has only been applied in our previous work in Asad

nd Slabaugh (2014) ; (2016) , which does not require camera

alibration. Our method in Asad and Slabaugh (2014) utilized

wo single-variate Random Forest (RF) regressors based on an

ssumption that the orientation angles vary independently. This

ethod, evaluated on a subset of hand orientation angles, showed

he significance of inferring hand orientation from 2D uncalibrated

onocular images. We extended the hand orientation inference

ramework further, in Asad and Slabaugh (2016) , by utilizing an

L-RF regression method that used multi-variate regressors to

egress the orientation angles together. Additionally, we used a

and orientation dataset that covered a more detailed orientation

pace. Similar to our previous work, the method proposed in this

aper also does not require camera calibration which renders it

uitable for a wider array of applications across different devices.

he dataset used for training the proposed method comes from

ultiple people, which enables it to naturally handle person-to-

erson hand variations. The proposed staged probabilistic regres-

ion method learns different variations in stages, where it relies on

ntermediate model evaluations to reveal harder to learn samples. 

Independent work proposed in Sharp et al. (2015) utilized

lobal hand orientations from depth images to improve hand pose

ptimization. This method first generated a dataset of synthetic

epth images and the corresponding global hand orientations. An

L-RF model was then utilized, where the first layer inferred a

uantized hand orientation and the second layer estimated refined

rientation along with additional pose information. The prediction

robabilities, however, were utilized to sample candidate solutions

or use with PSO-based optimization. The synthetic depth images

rovided detailed visible shape information, which introduced

ewer ambiguities in the data as compared to 2D images, thus

esulting in a simpler orientation estimation problem in Sharp

t al. (2015) . 

.5. Marginalization of multi-layered Random Forest 

Previous work on hand pose estimation have utilized ML-RF,

here complex problems have been divided and solved by a

umber of expert regressors trained on simpler subsets of the

ata ( Asad and Slabaugh, 2016; Fanello et al., 2014; Keskin et al.,

012 ). Keskin et al. (2012) proposed an ML-RF classification for

and pose estimation, which was divided into two classification

ayers, namely, shape classification and pose estimation layer.

hree most significant posterior probabilities from the first layer

ere used to marginalize the posterior probabilities in the second

ayer. A similar ML-RF regression method was proposed in Fanello

t al. (2014) , where the first layer performed coarse classification

nd the second layer achieved fine regression. Marginalization in

his method was done using posterior probabilities from coarse

lassification layers as weights for predictions at the fine regres-

ion layer. Dantone et al. (2012) proposed Conditional Random

orest for detecting facial features. This method also used all

osterior probabilities from both layers for marginalization. Sun

t al. (2012) utilized Conditional Random Forest for inferring joint

ocations for human body pose estimation. They argued that a

ulti-layered model that is conditioned on a global latent vari-

ble, such as torso orientation or human height, can significantly

ontribute to improved joint location prediction. All these methods

elied on posterior probabilities from the first layer which tends to

nderestimate the true posteriors, making these methods prone to

rrors ( Hallman and Fowlkes, 2015 ). Furthermore, as the first layer

s trained independently to the second layer, these methods cannot

ecover from inaccuracies arising from the posterior probabilities

f the second layer. Our previous work in Asad and Slabaugh

2016) proposed a method for learning marginalization through
egression by extracting marginalization weights using posterior

robabilities of the expert regressors. In this paper, we extend this

ork by introducing a staged probabilistic regression method for

earning hand orientation. 

Boosting algorithms, such as Adaboost ( Solomatine and

hrestha, 2004 ) and Gradient Boosting ( Friedman, 2001 ), se-

uentially learn and combine weak learners, such as Decision

tumps, to build an expressive model. The key idea in these

ethods is to highlight the training samples with large errors and

et the next weak learner minimize such errors. Adaboost achieves

his by having an additional weight for each training sample

hereas Gradient Boosting utilizes the gradient representing the

lobal loss. Similar to Gradient Boosting, Alternating Regression

orest ( Schulter et al., 2013 ) incorporates a global loss function for

mproving the Regression Forest optimization algorithm. Our pro-

osed staged learning method is inspired by Boosting, however, it

iffers from Boosting as it follows a probabilistic approach. More-

ver, our method utilizes only harder samples to train the subse-

uent stages, in contrast to all data used in non-cascaded Adaboost

r Gradient Boosting. This enables our method to learn an ensem-

le of expert regressors, where each regressor learns well from

nly a subset of variations in the dataset. Furthermore, we mathe-

atically formulate a probabilistic method for combining such en-

embles, facilitating them to work collectively for better accuracy.

nother appealing property of our method is that, unlike Adaboost,

t does not require the underlying regressors to incorporate train-

ng weights representing the evaluation of the previously learned

tages. In this paper we utilize the Random Forest as the proba-

ilistic regressor, however, we note that our method can be easily

eneralized to work with any probabilistic regressor or classifier. 

. Problem formulation 

Let U = { (d k , o k ) } K k =1 
be a dataset with K Contour Distance

eature (CDF) vectors d k and the corresponding target orientation

ectors o k containing the continuous variables for azimuth ( φk )

nd the elevation ( ψ k ) angles. The CDF vectors are extracted from

and silhouette images captured from an uncalibrated 2D monoc-

lar camera such that it contains variations in hand orientation,

hape and size ( Asad and Slabaugh, 2014 ). We further describe

he method for extracting the CDF in Section 5.1 . In this work,

e address the problem of learning the mapping of the CDF in d k 

nto the target orientation o k , i.e. the orientation angle pair ( φk ,

 k ). This is an ill-posed problem, as there may be multiple hand

rientations that produce the same contour. We propose a staged

earning algorithm for an ML-RF regressor. This method utilizes an

nsemble of expert regressors that learns the complex mapping of

DF d k onto the target hand orientation o k , despite the presence of

 number of variations in orientation, shape and size of the hand. 

. Assumptions 

Most mobile devices are equipped with 2D monocular cam-

ras. 3D depth cameras are not widely available on such devices

ue to their high power consumption, cost and relatively larger

orm-factor ( Fanello et al., 2014 ). Our proposed SPORE method is

argeted for mobile devices, and for this reason, we only use 2D

onocular images. Most existing state-of-the-art methods utilize

epth data, where the focus is to infer detailed articulated hand

ose ( Keskin et al., 2012; Oikonomidis et al., 2011a; Tang et al.,

013 ). These methods are not suitable for a mobile scenario where,

n addition to the absence of depth sensors, limited computational

esources are available. The proposed method for hand orientation

nd pose estimation assumes the use of 2D monocular cameras,

here limited computational resources are available and real-time

erformance is required. Moreover, to enable a method that works
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Fig. 2. Variations in style, shape and size of hand from 15 participants in our 

datasets. The hand images are shown for the same orientation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Hand images with orientation angles in the range 
√ 

φ2 + ψ 

2 � 45 ◦ . The 

large orientations result in self-occlusion where the visible shape of the hand is 

significantly occluded. Such orientations are not addressed in this paper. 
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across different devices without the need for camera calibration,

we assume that the utilized cameras are uncalibrated. 

We assume that the hand orientation can be represented with a

single 3D normal vector for a planar hand pose. This enables us to

reliably extract hand orientation angles encoded by the 3D normal

vector, which is satisfied by a limited set of articulated hand pos-

tures. Nevertheless, such assumption facilitates our research to fo-

cus on the effects of hand orientation variations with a predefined

set of planar hand shapes. This paper refers to planar hand shapes

as hand poses, where our aim is to study the effects of orientation

variations on such hand poses. While the problem seems similar to

pose estimation for rigid objects, it is quite different from it as our

data contains multiple sources of variations. These include inter-

person hand shape and size variations and intra-person pose and

style variations. In Fig. 2 , we show the inter-person hand variations

in style, shape and size of 15 different hands from our dataset with

the same hand orientation. We note that these variations further

make the hand orientation and pose estimation a challenging task.

Given the 3D normal vector, we extract the orientation

encoded by azimuth ( φ) and elevation ( ψ) angles ( Asad and

Slabaugh, 2014 ). Our aim is to model variations in orientations

for fronto-parallel hand, therefore we limit the orientation angles

to 
√ 

φ2 + ψ 

2 ≤ 45 ◦. On the contrary, hand orientations with√ 

φ2 + ψ 

2 � 45 ◦ are affected by self-occlusion where the visible

shape of the hand is significantly occluded. Fig. 3 shows some

example hand images for these orientations. 

Skin and hand segmentation have a long history in computer

vision, where many segmentation techniques have been devised

( Jones and Rehg, 2002; Li and Kitani, 2013; Vezhnevets et al.,

2003 ). We therefore extract hand silhouette images by utilizing

the skin detection method proposed in Jones and Rehg (2002) . We

assume that the background is uncluttered and the illumination

conditions are fixed for reliable silhouette extraction. This is a

potential limitation of the proposed method, however, it enables

us to focus on the hand orientation estimation problem given a

segmented silhouette image of planar hand shape. 

To robustly extract hand shape features, we assume that the in-

plane orientation θ of the hand will always be within a predefined

range of an upright hand pose, where θ = 90 ◦. Our assumption is

satisfied by setting the operating range on the in-plane orientation

to be 0 ° < θ < 180 °. 

5. Staged probabilistic regression 

In our proposed method, we utilize a multi-layered Random

Forest composed of two layers, where the first layer consists of a
ingle marginalization weights regressor and the second layer is

omposed of an ensemble of expert regressors trained on subsets

f the hand orientation dataset. We introduce a staged learning

ethod that trains and adds the expert regressors to the model

ncrementally. The flowchart of the training and prediction frame-

ork for SPORE is presented in Fig. 4 . Algorithms 1 and 2 detail

he training and prediction algorithm for SPORE. In the proposed

ramework each expert regressor that is added to the model

s trained on samples that the existing expert regressors have

ifficulty in learning. We achieve this by combining the existing

odels using marginalization weights and evaluating the accuracy

f the model after each training stage. Based on a threshold error,

e identify the harder regression problems after each stage and

se these samples to train the next expert regressor. This approach

nables us to use our regression-based marginalization framework

ithout defining subsets using latent variable boundaries as in

sad and Slabaugh (2016) . When all expert regressors have been

rained, the posterior probabilities corresponding to each sample

n the training set are acquired from each of the trained expert

egressors. We derive and apply a Kullback–Leibler divergence-

ased optimization technique that estimates the marginalization

eights for estimating marginal probability distribution from the

iven ensemble of expert regressors. We use these marginalization

eights to train a marginalization weights regressor which enables

s to combine the ensemble of expert regressor. As demonstrated

n Section 6 , this staged learning approach allows us to achieve

igher accuracy as compared to previously proposed marginaliza-

ion methods as well as a single regressor-based approach. We

ow describe the SPORE approach in detail. 

.1. Contour distance features 

Our proposed framework utilizes the Contour Distance Fea-

ures (CDFs) which are extracted from hand silhouette images.

DFs have been previously used for hand shape-based gesture

ecognition ( Yoruk et al., 2006 ). The changes in the CDF relate

o variations in both hand orientation and pose. Moreover, we

lso employ a method for aligning and normalizing the extracted

eatures. We now describe the method for extracting CDF vectors. 

Given a dataset { s k } K k =1 
of input silhouette images, we compute

 corresponding CDF set { d k } K k =1 
( Asad and Slabaugh, 2014 ). The

ontour extracted from each silhouette image in { s k } K k =1 
consists of

oints p k = { p k 1 , · · · , p ki , · · · p kI k 
} , where k specifies the sample in-

ex, i is the index for each point in the contour and I k is the total

umber of contour points in k th sample. Let a contour distance for

 single silhouette image be denoted by ̃  d k = 

{˜ d k 1 , · · · , ̃  d ki , · · · ˜ d kI k 

}
.˜ 

 ki is computed by calculating the Euclidean distance of each of

he contour points p ki = { p x 
ki 

, p 
y 

ki 
} to a prevalent point on the wrist
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Fig. 4. Flowchart shows the staged probabilistic regression (SPORE) training and prediction framework. 
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 k = 

{
q x 

k 
, q 

y 

k 

}
and is given by: 

˜ 

 ki = 

√ (
q x 

k 
− p x 

ki 

)2 + 

(
q y 

k 
− p y 

ki 

)2 
, (1) 

here q k is extracted, for each sample in { s k } K k =1 
, by emanating a

ay from centroid in the direction of the wrist ( Asad and Slabaugh,

014 ). We further discuss the approach for extracting q k in the

ext section. The extracted features have a different number of

amples I k and magnitude depending on the scale changes and

nter-person hand shape variations. We normalize the magnitude

sing Eq. (2) . 

 k = 

˜ d k 

max 
1 ≤i ≤I k 

( ̃  d ki ) 
. (2) 

 k is then resampled to a specified number of samples Y to

roduce d k ∈ { d k } K k =1 
. In our experimental evaluation, we found

hat the value of I k is related to the scale of the hand, which

e found to be in the range 800 − 1400 samples. We empirically

hoose ϒ = 10 0 0 to preserve the variations in the feature vector. 

.1.1. Extraction of a prevalent point on the wrist 

We now describe the method for extracting a prevalent point

 k on the wrist in a silhouette image s k . This point is used as a

eference point in Eq. (1) to extract the CDF vector. Furthermore,

he point q k also aligns the corresponding CDF vector. Fig. 5 shows

he method for extracting such prevalent point, for a given hand

ontour, along with its corresponding CDF vector. We use the
n-plane orientation θ of the hand, which can be defined by the

ngle between the x-axis and the major axis of an ellipse that

ts the hand contour. Given θ and the contour centroid c k , an

quation of a ray emanating from c k can be defined by: 

 k = ξκ ˆ v k + c k , (3) 

here ˆ v k is the unit vector encoding the direction, 

ˆ 
 k = 

[
1 

tan θ

]
√ 

1 

2 + tan 

2 θ
, (4) 

is a scalar for correcting the direction of ˆ v k , 

= 

{
+1 if θ < 90 

◦

−1 if θ ≥ 90 

◦, 
(5) 

nd κ is a parameter that changes the length of the ray. 

The direction scalar ξ is calculated using Eq. (5) based on the

ssumption that the in-plane orientation θ of the hand will always

e in the range 0 ° < θ < 180 °. ξ is used in Eq. (3) to correct the

irection of the ray v k so that it is always propagating towards the

rist. Our proposed method increases κ until the ray intersects

ith the contour at a point q k ∈ p ki on the wrist. This point is

lso used as a starting point for the distance feature calculation.

he construction of CDF in this way makes the proposed method

nvariant to in-plane rotations in the range 0 ° < θ < 180 °. 
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Algorithm 1: Training algorithm for SPORE. 

Input : U all = { (d 1 , o 1 ) , · · · , (d k , o k ) , · · · , (d K , o K ) } , N, α
% N is the number of stages 

% α is the error threshold 

Output : ( ER n , MR ) 

% ER n are N Expert Regressors 

% MR is the Marginalization Weights Regressor 

1 n ← 1 % Starting stage 

2 { r n (k ) } K 
k =1 

← 1 % Latent variable selecting all samples 

3 U sel ← selectSubset( U all , r n ) % Select initial subset of U all 

4 % Training ER n 

5 for n ← 1 to N do 

6 ER n ← Train( U sel ) % Train stage n using selected subset 

7 if n = 1 then 

8 p ( o k | r n , d k ) ← Predict( d k , ER n ) % Get posterior 

probabilities 

9 o p (k ) ← arg max o k p ( o k | r n , d k ) 

10 else 

11 for m ← 1 to n do 

12 p ( o k | r m 

, d k ) ← Predict( d k , ER m 

) 

13 end 

14 ω nk ← getMarginalizationWeights( p ( o k | r n , d k ) ) % 

Described in Section 5.5 

15 p ( o k | d k ) ← 

∑ n 
m =1 p ( o k | r m 

, d k ) ω mk % Marginalize 

probabilities described in Section 5.3 

16 o p (k ) ← arg max o k p ( o k | d k ) 

17 end 

18 % Define latent variable for next stage described in 

Section 5.4 

19 if | o p (k ) − o k | > α then 

20 r n (k ) ← 1 

21 else 

22 r n (k ) ← 0 

23 end 

24 U sel ← selectSubset( U all , r n ) 

25 end 

26 % Training MR 

27 for n ← 1 to N do 

28 p ( o k | r n , d k ) ← Predict( d k , ER n ) % Get posterior 

probabilities 

29 ω nk ← getMarginalizationWeights( p ( o k | r n , d k ) ) 

30 W all ← { (d 1 , ω n 1 ) , · · · (d K , ω nK ) } % Define training 

set for MR 

31 MR ← Train( W all ) 

32 end 

33 return ER n , MR 

 

 

 

 

 

 

 

 

 

 

Algorithm 2: Prediction algorithm for SPORE. 

Input : d , ER n , MR , N 

% d is the input Contour Distance Feature vector 

% ER n are N Expert Regressors 

% MR is the Marginalization Weights Regressor 

Output : o 

% o = (φ, ψ) is a vector of predicted orientation angles 

1 o ← Ø

2 ω n ← Predict( d , MR ) % Predict Marginalization Weights 

3 for n ← 1 to N do 

4 p ( o | r n , d ) ← Predict( d , ER n ) % Get posterior probabilities 

5 end 

6 p ( o | d ) ← 

∑ N 
n =1 p ( o | r n , d ) ω n % Marginalize posterior 

probabilities 

7 o ← arg max 
o 

p ( o | d ) 

8 return o 
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5.2. Random Forest construction 

Building on the reported superior performance in the existing

work for hand pose estimation ( Fanello et al., 2014; Keskin et al.,

2012; Tang et al., 2013 ), our proposed staged probabilistic regres-

sion method utilizes a Random Forest training algorithm for both

regression layers. In this section, we present details of the training

algorithm specific to our proposed method, a further in-depth

literature on Random Forest can be found in Criminisi and Shotton

(2013) . 

The forest is a collection of T trees which are trained using a

training dataset U = { (d k , o k ) } K k =1 
. Each tree consists of split nodes,

responsible for performing a binary split on the input dataset,
nd terminal leaf nodes that store the probability distribution of

he data propagated down the branches of the tree. The learned

arameters 
 = ( w, τ ) are stored at each split node, where w is

he index of the test feature and τ is its corresponding learned

hreshold defining the split. The data arriving at the j th node is

plit using a splitting function f 
(
U j , 


)
defined as: 

f 
(
U j , 


)
= 

{
Le f t if U j ( w ) < τ, 

Right otherwise . 
(6)

riven by maximizing the information gain Q 

(
U j , 


)
, this splitting

unction splits the data into two sets 

{ 

U Le f t 
j 

, U Right 
j 

} 

∈ U j for the

hild nodes. The information gain Q 

(
U j , 


)
is defined as: 

 

(
U j , 


)
= H 

(
U j 

)
−

∑ 

b∈ { Le f t ,Right } 

∣∣U 

b 
j 

∣∣∣∣U j 

∣∣ H 

(
U 

b 
j 

)
, (7)

here H 

(
U j 

)
is the Shannon entropy of U j . 

The branches in the tree terminate with leaf nodes that contain

he probability distributions of the data arriving as a result of

he above splitting process. During the online prediction, a given

nput feature vector d propagates down the branches of each tree,

here a leaf node gives a posterior probability p t ( φ, ψ | d ). The

redictions from all trees are aggregated as: 

p ( φ, ψ | d ) = 

1 

T 

T ∑ 

t=1 

p t ( φ, ψ | d ) , (8)

here ( φ, ψ) is the orientation vector o whose final value is

etermined by maximum-a-posteriori (MAP) estimation as: 

( φ, ψ ) 
∗ = arg max 

φ,ψ 

p ( φ, ψ | d ) . (9)

.3. Marginalization of multiple expert regressors 

In our proposed method, the ensemble of expert regressors

onsists of a set of multi-variate Random Forest regressors that

re trained on the subset of our hand orientation dataset U . This

nsemble of expert regressors enables better generalization in the

resence of a number of variations in the dataset. The subsets of

ur dataset are defined based on latent variable representations

hat are generated using the intermediate model evaluations.

iven an input CDF vector d each expert regressor infers the

osterior probability p ( φ, ψ | r n , d ) for a given latent variable r n . 
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Fig. 5. Contour Distance Feature (CDF) vector extraction from a hand contour showing (a) the method for extraction of a prevalent point q k on the wrist using a fitted 

ellipse with in-plane orientation θ , centroid c k and a ray v k and (b) the corresponding CDF vector. 
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Our proposed expert regression layer contains an ensemble of

rained expert regressors, where the task of marginalization is to

stimate their combined marginal probability that is used to infer

rientation angles o = ( φ, ψ ) for a given input feature vector d .

his marginal probability is defined as: 

p ( φ, ψ | d ) = 

N ∑ 

n =1 

p ( φ, ψ | r n , d ) ω n , (10)

here ω n are marginalization weights corresponding to each

atent variable such that 
∑ N 

n =1 ω n = 1 and N is the total number

f expert regressors. In the subsequent sections, we present a

ethod to estimate the marginalization weights ω n from trained

xpert models and propose to use a marginalization weights re-

ressor that learns the mapping of CDF d onto the corresponding

arginalization weights ω n . 

.4. Latent variable generation using intermediate models 

In our proposed work we do not explicitly define the latent

ariable space, as in Asad and Slabaugh (2016) . We, however, rely

n intermediate model evaluations for defining a latent variable r n 
nd, as a result, define the subsets used for training the expert re-

ressor in the n th stage. We start training the first expert regressor

sing all samples in the dataset U . Following this, we train and

dd additional expert regressors to the ensemble using subsets of

he dataset defined by the corresponding latent variable r n . For

ach training sample in U , we determine if it belongs to the latent

ariable r n by: 

 n (k ) = 

{
1 if | o p (k ) − o k | > α, 

0 otherwise , 
(11) 

here o p ( k ) are the orientation angles predicted by marginalizing

ntermediate model probabilities using Eq. (10) and o k are the GT

rientation angles, respectively. α is an adjustable threshold and

 n ( k ) ∈ {0, 1} determines if the given sample belongs to the latent

ariable r n for the n th stage. 

This method has two advantages over the previously proposed

atent variable based training ( Asad and Slabaugh, 2016 ). Firstly,

he proposed method relies on the model to define and use

ubsets, which might be useful in cases where optimal latent

ariable-based subset definitions are difficult or not well defined.
econdly, in cases where datasets are small and dividing them into

ubsets can result in shallow under fitting models, our proposed

ncremental learning method is capable of defining latent variables

ith overlapping boundaries ensuring complete training of expert

egressors. 

.5. Marginalization through regression 

We marginalize the posterior probabilities from multiple expert

egressors using a single Random Forest regressor. This regressor

s trained using marginalization weights that are extracted using

raining data. Marginalization through regression is able to gen-

ralize better by learning a complex mapping of the CDF vectors

nto weights that marginalize the posterior probabilities from

xpert regressors ( Asad and Slabaugh, 2016 ). For estimating the

arginalization weights, we first formulate the prior probability

or the training samples using the GT orientation angles ( φgt , ψ gt )

n a multi-variate normal distribution as: 

p ( φgt , ψ gt ) = N ( ( φgt , ψ gt ) , �) , (12) 

here � is the covariance that can be adjusted to control the

pread of p ( φgt , ψ gt ). 

Given the prior probability p ( φgt , ψ gt ) and the corresponding

osterior probabilities p ( φ, ψ | r n , d ), we propose a novel opti-

ization method, where the marginalization error is based on

he Kullback-Leibler divergence ( Kullback and Leibler, 1951 ). Fig. 6

hows the marginalization weights estimation framework. The er-

or is optimized to estimate the GT marginalization weights ω n for

ll latent variables r n ∈ { r 1 , r 2 , r 3 ���r N }. We define this error as: 

 = 

∫ ∫ 
p ( φgt , ψ gt ) log 

p ( φgt , ψ gt ) 

p ( φ, ψ | d ) 
d φd ψ. (13)

erivation We optimize the weights using gradient descent, which

elies on derivatives of E with respect to the weights ω n . Here we

resent the derivation of partial derivatives from Eq. (13) that can

e used to obtain optimal weights ω n . 

 = 

∫ ∫ 
p ( φgt , ψ gt ) log 

p ( φgt , ψ gt ) 

p ( φ, ψ | d ) 
d φd ψ, (14) 
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Fig. 6. Marginalization weights estimation using training data. A training sample is used to get posterior probabilities from each expert regressor. These probabilities are 

then used along with the prior probability in Eq. (13) to estimate marginalization weights and the corresponding marginalized probability. Probabilities shown are only for 

demonstrating the concept and are not actual probabilities from multiple stages of SPORE. 
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= 

∫ ∫ 
p ( φgt , ψ gt ) 

[ 

log p ( φgt , ψ gt ) 

− log 

( 

N ∑ 

n =1 

p ( φ, ψ | r n , d ) ω n 

) ] 

d φd ψ. (15)

The partial derivative w.r.t ω n can then be defined as: 

∂E 

∂ω n 
= −

∫ ∫ 
p ( φgt , ψ gt ) p ( φ, ψ | r n , d ) ∑ N 

n =1 p ( φ, ψ | r n , d ) ω n 

d φd ψ. (16)

Optimization We use gradient descent with: 

∇E = 

[
∂E 

∂w 1 

, 
∂E 

∂w 2 

, 
∂E 

∂w 3 

· · · ∂E 

∂w N 

]
, (17)

for which the optimization is iteratively evolved for a solution

given by: 

ω 

γ +1 
n = ω 

γ
n − λ∇E γ , (18)

where λ is the step size along the negative gradient direction

and γ is the iteration number. At this stage, we have the optimal

weights fit to the GT. These are required to train the marginaliza-

tion weights regressor that produces the weights ω n during online

prediction. This regressor is described next. 

Marginalization weights regressor We use a multi-variate

Random Forest regressor to learn the mapping of CDF vectors to

marginalization weights ω n . This regressor is used during pre-

diction to infer marginalization weights ω n for marginalizing the

posterior probabilities p ( φ, ψ | r n , d ) from each expert regressors

using Eq. (10) . 

5.6. Extension to estimate orientation and pose 

The proposed staged probabilistic regression method can be ex-

tended to simultaneously infer the hand orientation and pose. To

achieve this, we utilize a hand orientation and pose dataset which

contains the CDF ( d k ), the corresponding hand pose label ( χ k ) and

the orientation angles ( o k ). We introduce the pose classification

into each expert regressor by including the discrete posterior
robability distributions p ( χ | d ) in the leaf nodes. Training of this

xtended model is driven by both orientation regression as well

s pose classification data. We achieve this by using a selected

nformation gain Q s , which is determined by: 

 s = (1 − β) Q r + βQ c , (19)

here Q r is the orientation regression information gain, Q c is the

ose classification information gain and β ∈ {0, 1} is a random

ariable selected with probability p ( β). We use standard classifi-

ation and regression information gain as defined in Criminisi and

hotton (2013) . 

Given the additional pose classification task, we define the

atent variable space r n by modifying Eq. (11) with an additional

erm as: 

 n (k ) = 

{
1 if | o p (k ) − o k | > α or χp (k ) 
 = χk , 

0 otherwise , 
(20)

here χp ( k ) and χ k are the predicted and GT hand poses, re-

pectively. The additional criteria related to hand poses in Eq.

20) identifies samples for which the existing intermediate model

as difficulty in inferring the hand pose. 

For an input CDF vector d , each expert model now additionally

nfers the posterior probability p ( χ | r n , d ). We marginalize these

osterior probabilities using: 

p ( χ | d ) = 

∑ 

a 

p ( χ | r n , d ) ρn , (21)

here ρn are weights corresponding to each latent variable for the

lassification posterior probabilities and 

∑ N 
n ρn = 1 . We estimate

hese marginalization weights using discrete version of energy E

efined as: 

 c = 

∑ 

χ

p ( χgt ) log 
p ( χgt ) 

p ( χ | d ) 
. (22)

The partial derivatives w.r.t ρn can be defined using E c as: 

∂E c 

∂ρn 
= −

∑ 

χ

p ( χgt ) p ( χ | r n , d ) ∑ N 
n =1 p ( χ | r n , d ) ρn 

. (23)
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Fig. 7. Four hand postures, along with their corresponding labels, used for multiple 

pose experimental validation. (a) shows an open hand pose used for single pose 

experimental validation of SPORE. 
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We use gradient descent to estimate the optimal weights

n for the classification posterior probabilities. We augment the

arginalization weights for classification ρn and regression ω n to

rain a marginalization weights regressor that infers both weights

imultaneously. 

. Experimental validation 

We evaluate our proposed staged probabilistic regression

SPORE) method using two datasets collected from 22 participants.

he first dataset referred to as single pose dataset herein, contains

414 samples captured for an open hand pose from 22 differ-

nt participants. The second dataset, referred to as multiple pose

ataset herein, contains 8675 samples captured using four different

and poses (shown in Fig. 7 ) from 10 different participants. The

ifferent hand poses used for experimental validation are limited,

owever, they demonstrate the applicability of the proposed

ethod in scenarios where multiple hand poses are required. All

f the hand poses used in this paper are planar, which enables

s to extract reliable GT hand orientation using the method de-

cribed in Asad and Slabaugh (2014) . The range of the orientation

ngles captured by these datasets are restricted to a circular space

efined by 
√ 

φ2 + ψ 

2 ≤ 45 ◦. This gives us an appropriate ratio for

he number of samples against the variations within the defined

rientation space. We show experimental results that demonstrate

he ability of our proposed staged probabilistic regression method

o infer hand orientation and pose on these datasets. 

.1. Comparison methods 

The proposed method is compared with a previous method

or hand orientation regression that uses a single-layered single-

ariate Random Forest (SL-SV RF) with independence assumption

n each hand orientation angle ( Asad and Slabaugh, 2014 ). We

lso compare with four different methods for the marginalization

f ML-RF regressors ( Asad and Slabaugh, 2016; Dantone et al.,

012; Fanello et al., 2014 ). Furthermore, as SPORE is inspired by

oosting, we compare it with Random Forest with Adaboost (RF

daboost) ( Solomatine and Shrestha, 2004 ), Alternating Regression

orest (ARF) ( Schulter et al., 2013 ) and Gradient Boosted Trees

GBT) ( Friedman, 2001 ). Our previous work proposed in Asad and

labaugh (2016) , referred to as ML-RF MtR herein, is closely re-

ated to SPORE. This method also utilized a multi-layered Random

orest, where the first layer consisted of a single marginalization

eights regressor and the second layer contained five expert

egressors. The expert regressors in ML-RF MtR were trained on

ubsets of the orientation dataset defined using a simple obser-

ation that the hand can be oriented (i) fronto-parallel or facing

ii) right, (iii) left, (iv) upwards or (v) downwards with respect

o the camera. Marginalization weights for the expert regressors

ere extracted using posterior probabilities and a Kullback-Leibler

ivergence-based optimization similar to the one described in

ection 5 . ML-RF MtR differs from our proposed SPORE method
n terms of the explicit definition of the five latent variables for

efining subsets of the training data. In contrast, SPORE relies

n the learned models to define the next most suitable latent

ariable space, which has a number of advantages that are dis-

ussed in Section 6.4 . We refer to the other ML-RF marginalization

ethods as ML-RF1, ML-RF2 and ML-RF3 herein, adapted from

anello et al. (2014) and Dantone et al. (2012) . These methods also

ely on the same explicit definition of latent variables as in ML-RF

tR. While the methods proposed in Fanello et al. (2014) and

antone et al. (2012) do not originally address hand orientation

egression problem, they provide a method for marginalizing the

L-RF in different domains. In our experimental validation, these

hree ML-RF comparison methods use a two-layered Random For-

st with a coarse latent variable classification in the first layer and

xpert orientation regression in the second layer. These methods

nly differ in marginalization where ML-RF1 uses the predicted

atent variable in the coarse layer to select the corresponding

xpert regressor for prediction, as defined by Eqs. (24) and (25) . 

 

∗
n = arg max 

r n 

p ( r n | d k ) , (24) 

(φ∗, ψ 

∗) = arg max 
(φ,ψ) 

p ( φ, ψ | r ∗n , d k ) . (25) 

ML-RF2 uses posterior probabilities of each latent variable in

he coarse layer as marginalization weights for predicted angles

rom each expert regressor, whereas ML-RF3 uses posterior prob-

bilities from both the coarse and the expert layers to present the

arginalized posterior probability. The mathematical formulation 

or predictions using ML-RF2 is shown in Eq. (26) . 

(φ∗, ψ 

∗) = 

N ∑ 

n =1 

p ( r n | d k ) arg max 
(φ,ψ) 

p(φ, ψ | r n , d k ) , (26) 

here N = 5 is the total number of expert regressors in the

L-RF model. Eqs. (27) and (28) show the formulation for making

redictions using ML-RF3. 

p(φ, ψ | d k ) = 

N ∑ 

n =1 

p ( r n | d k ) p(φ, ψ | r n , d k ) , (27) 

(φ∗, ψ 

∗) = arg max 
(φ,ψ) 

p(φ, ψ | d k ) . (28) 

We evaluate the extension of our proposed method to simul-

aneously estimate orientation and pose using the multiple pose

ataset . To show the role of hand orientation in improving the

ose classification performance we compare this extension of our

ork with a Random Forest classifier (RF Clf) that infers hand

ose only. We also make the comparison of orientation inference

f this extension with all of the comparison methods that utilize

andom Forest. These include ML-RF MtR, SL-RF SV, ML-RF1,

L-RF2, ML-RF3, RF Adaboost and ARF. We exclude evaluation

f GBT on this data as this method does not provide a way to

ombine regression and classification into the same model. The

esults of these comparisons are discussed in Section 6.5 . 

.2. Error measures 

We evaluate the proposed method using a number of qualita-

ive as well as quantitative error measures. These include Mean

bsolute Error (MAE) for each orientation angle, Combined Mean

bsolute Error (CMAE) for both azimuth and elevation angles,

T versus predicted angle plots and percentage data versus error

lots. We present a brief overview of the quantitative measures

elow. 
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Fig. 8. Percentage data versus error in prediction shows the percentage of data that lies below a given error in prediction for the single-fold validation using (a) single pose 

dataset and (b) using multiple pose dataset . 
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6.2.1. Mean absolute error 

Given a set of GT orientation angles ( φk , ψ k ) and the corre-

sponding predicted angles ( φpk , ψ pk ) from a trained regressor, the

MAE ( φm 

, ψ m 

) is defined by Eqs. (29) and (30) . 

φm 

= 

∑ K 
k =1 | φk − φpk | 

K 

, (29)

ψ m 

= 

∑ K 
k =1 | ψ k − ψ pk | 

K 

. (30)

We use MAE instead of Euclidean distance between the GT and

predicted orientation as in our work we found that sometimes the

regressor is able to infer only one of the two angles correctly. In

such a scenario, a Euclidean distance does not present accurate

measure of performance. On the other hand, MAE provides a quan-

titative measure of the regressor’s performance independently for

each orientation angle. We use the MAE to define the CMAE as: 

MAE = 

φm 

+ ψ m 

2 

, (31)

CMAE is particularly used for tuning different training parameters

of SPORE. 

6.3. Parameter optimization 

The proposed SPORE method has different training parameters.

These include the number of trees ( T ), depth of each tree ( δt ),

minimum number of samples in each leaf node ( ηj ), the number

of features selected at each split node ( ε), the number of stages

( N ), the latent variable generation parameter α and the prob-

ability p ( β) for selecting information gain for the extension of

the proposed method for simultaneous hand orientation and pose

inference. As all comparison methods utilize Random Forest, there-

fore we empirically set the values of the related parameters as,

T = 100 , δt = 10 , η j = 20 , ε = 1 . As the proposed SPORE method

is independent of the number of predefined subsets, therefore any

number of stages N can be used. We perform single-fold validation

using the single pose dataset , randomly selecting 70% of the data

for training and 30% for testing, to evaluate the optimal values for

N , α and p ( β). 

The CMAE with varying number of stages N is shown in

Fig. 8 (a). It can be seen that SPORE with N = 5 stages presents

the minimum MAE for both azimuth ( φ) and elevation ( ψ) angles

combined. The error increases for N � 5 as the subsequent regres-

sion stages with N > 5 do not get enough data for training. Hence,

N = 5 optimally captures the variations in our dataset by providing

a good balance for the number of stages and sufficient samples

in the subsets defined by the corresponding latent variables. We

choose N = 5 for the rest of the experimental validation. Fig. 8 (b)
hows the CMAE with varying α threshold in Eq. (11) using N = 5 .

e note that selecting α = 6 ◦ yields the best performance of the

roposed SPORE method. α acts as a threshold for defining the

ubset of training data for the next stage. We observe that if α is

oo low, i.e. α ≈ 0, then the subsequent stages will all be trained

sing all training samples, thus not targeting to learn from specific

ariations. On the contrary, if α is set too high, i.e. α > 10 °, then

he latent variable space will not be fully defined for subsequent

tages, hence resulting in under fitting models. We note that

= 6 ◦ maintains a good balance for selecting harder samples for

raining subsequent stages. Therefore we select this value for the

est of the experimental validation. 

The extension of our proposed SPORE method for simultane-

usly inferring hand orientation and pose additionally depends

n probability p ( β) for selecting classification or regression in-

ormation gain for training. We present the effect of varying this

robability on hand orientation and pose inference in Fig. 9 . We

ote that selecting regression information gain more often than

lassification information gain (i.e. p(β = 0) > 0 . 5 ) yields better

erformance for both hand orientation and pose inference. It can

lso be seen that the pose classification is solved even when

o classification information gain is used ( p(β = 0) = 1 ). This is

ecause the information for each pose is well encoded within the

DF and hand orientation. In our experimental validation we use

p(β = 0) = 0 . 9 . This means that at each split node, regression

nformation gain is selected more frequently than classification

nformation gain. As we will further demonstrate in Section 6.5 ,

he hand orientation information can significantly improve pose

lassification results as with orientation the SPORE model is able

o build a better understanding of the hand pose dataset. 

.4. Experimental validation using single pose dataset 

The evaluation of our proposed hand orientation inference

ethod is done using the single pose dataset . We perform single-

old validation by randomly dividing 70% of the data into the

raining set and using the remaining 30% for testing. Table 1

hows the MAE in degrees for the single-fold evaluation using the

roposed SPORE method and the comparison methods. Further-

ore, we also show in Fig. 10 (a) the percentage of data that lies

nder a given error in prediction. 

We note that the proposed staged probabilistic regression out-

erforms the existing state-of-the-art in ML-RF marginalization as

ell as hand orientation inference. The proposed method also out-

erforms the methods related to Boosting, namely, RF Adaboost,

RF and GBT. These methods lack a probabilistic approach re-

ulting in higher MAE. On the contrary, the proposed method

s formulated using probabilities, where the complex mapping
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Fig. 9. Parameter optimization for p(β = 0) shows evaluation of the proposed SPORE method with hand orientation and pose estimation extension. (a) presents Combined 

Mean Absolute Error (CMAE) for orientation inference and (b) shows the accuracy of pose classification against varying probability p(β = 0) of selecting classification or 

regression information gain. 

Fig. 10. Percentage data vs error in prediction shows the percentage of data that lies below a given error in prediction for the single-fold validation using (a) single pose 

dataset and (b) using multiple pose dataset. 

Table 1 

Mean Absolute Error (MAE) in degrees for single pose experimental validation in Section 6.4 . 

Method used Azimuth ( φ) Elevation ( ψ) 

p-value p-value 

SPORE (proposed) 8.42 ° - 7.38 ° - 

ML-RF MtR ( Asad and Slabaugh, 2016 ) 9.65 ° 0.00 7.81 ° 0 . 13 × 10 −10 

SL-RF SV ( Asad and Slabaugh, 2014 ) 11.58 ° 0 . 25 × 10 −8 8.75 ° 0.00 

RF Adaboost ( Solomatine and Shrestha, 2004 ) 11.54 ° 0 . 72 × 10 −10 9.06 ° 0.00 

ML-RF1 10.24 ° 0 . 22 × 10 −5 8.02 ° 0.00 

ML-RF2 12.82 ° 0 . 20 × 10 −3 9.12 ° 0 . 11 × 10 −2 

ML-RF3 10.45 ° 0 . 10 × 10 −20 8.13 ° 0 . 15 × 10 −18 

ARF ( Schulter et al., 2013 ) 11.67 ° 0 . 29 × 10 −2 9.00 ° 0.00 

GBT ( Friedman, 2001 ) 10.39 ° 0 . 96 × 10 −3 7.62 ° 0 . 90 × 10 −4 
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w  
etween each stage and the input features is learned. We further

otice from Fig. 10 (a) that the proposed staged probabilistic re-

ression performs better with 78% of data lying in under 10 ° of

rror. We also note that at around 20 ° of error, the ML-RF2, SL-RF

V, RF Adaboost, ARF and GBT contain more percentage data than

ny other method. This is due to the fact that all other comparison

ethods, including the proposed SPORE, contains symmetry prob-

em for around 10% of the data. The symmetry problem arises as

 result of depth ambiguity in 2D monocular images, where mul-

iple hand orientations can produce the same contour. This affects

he regressors where for a given hand contour, the regressors in-

er symmetrically opposite hand orientations. This problem shows

p in all methods that use a probabilistic approach for marginal-
zation. ML-RF2, SL-RF SV, RF Adaboost, ARF and GBT infer only a

ew symmetrically opposite hand orientations. As these methods

ely on the weighted sum of regressor predictions or a prediction

rom a single regressor, therefore the variations due to the sym-

etry problem result in introducing a model bias. This results in

reater MAE for these methods in Table 1 . These models have a

ias as they are unable to fully learn from all the variations within

he orientation dataset. SPORE produces the results with the least

rror and a paired t-test with p-value less than 0.05 demonstrates

hat SPORE’s improvement over all other methods is statistically

ignificant. 

We also present the comparison of the proposed SPORE method

ith the most closely related ML-RF MtR method proposed in
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Fig. 11. Ground Truth (GT) versus predicted orientation angle plots showing results for (a)-(b) the proposed SPORE method and (c)-(d) the ML-RF MtR method proposed in 

Asad and Slabaugh (2016) . (e)-(f) shows the errors in ML-MtR that were corrected by SPORE (green arrows) and the correct predictions by ML-MtR that were incorrectly 

inferred by SPORE (red arrows). The larger number green lines compared to red show that SPORE improves estimation for the majority of samples. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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Asad and Slabaugh (2016) . In Fig. 11 , we present the single-fold

validation results showing the GT versus predicted plots for the

proposed SPORE method and the ML-RF MtR method. Fig. 11 (e)

and (f) shows the comparison of both methods, where green

arrows show predictions that were corrected using the proposed

SPORE method and red arrows show the predictions that were

incorrectly inferred by the proposed method. We note that in this

comparison a number of incorrectly inferred predictions by ML-RF

MtR are corrected by the proposed SPORE method. This is due

to the ability of our proposed SPORE method to define the latent

variable space using predictions from previous stages. This ap-

proach, however, is absent from the ML-RF MtR method where the

latent variable space is explicitly defined based on the observation
hat the hand can be (i) fronto-parallel or facing (ii) right, (iii)

eft, (iv) upwards or (v) downwards with respect to the camera.

ig. 12 shows success and failure cases for the proposed SPORE

ethod. We observe that the proposed method fails on difficult

amples where the fingers are not completely outstretched ( Fig. 12

e) and (f)). Moreover, in Fig. 13 we present the easy versus harder

o learn hand orientation samples. In Fig. 13 (a) easy samples are

resented that the SPORE learns from in the first stage. Fig. 13 (b)

hows harder to train samples that are used for learning the next

tages of SPORE. It can be seen that easy samples contain limited

nter-person variation in hand shape, size and style, whereas

arder samples have additional variations induced due to the

ovement of fingers, affecting the inter-finger spacing. 
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Table 2 

Mean Absolute Error (MAE) in degrees for multiple pose experimental validation in Section 6.5 . 

Method used Azimuth ( φ) Elevation ( ψ) 

p-value p-value 

SPORE (proposed) 8.53 ° - 8.14 ° - 

ML-RF MtR ( Asad and Slabaugh, 2016 ) 9.63 ° 0 . 41 × 10 −11 9.77 ° 0.00 

SL-RF SV ( Asad and Slabaugh, 2014 ) 15.04 ° 0 . 33 × 10 −8 14.95 ° 0 . 92 × 10 −10 

RF Adaboost ( Solomatine and Shrestha, 2004 ) 11.52 ° 0 . 29 × 10 −16 10.77 ° 0 . 32 × 10 −13 

ML-RF1 11.20 ° 0 . 22 × 10 −5 11.43 ° 0.00 

ML-RF2 12.83 ° 0 . 31 × 10 −5 11.63 ° 0 . 11 × 10 −6 

ML-RF3 11.00 ° 0 . 33 × 10 −16 10.81 ° 0.00 

ARF ( Schulter et al., 2013 ) 11.51 ° 0 . 4 × 10 −10 10.83 ° 0 . 47 × 10 −13 

Fig. 12. Success and Failure cases for the proposed SPORE method. The GT orien- 

tation (green) and predicted orientation using SPORE (blue) and ML-RF MtR (red) 

are shown with arrows. The first row shows the color images, whereas the cor- 

responding silhouette images are shown in the second row. (a)-(d) shows success 

cases where the proposed SPORE method successfully able to infers the orientation. 

(e)-(f) shows the failure cases where the proposed method fails. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 13. Easy versus hard training samples. (a) shows easy training samples that 

are successfully learned from in the first regressor with error | o p (k ) − o k | < α. (b) 

shows harder training samples, with error | o p (k ) − o k | > α, that are not completely 

learned from in the first expert regressor and hence are selected for the next stage 

training. Green arrows show the GT orientation. The difference between easy and 

hard samples can be seen in terms of inter-person pose, shape and style variation. 
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Table 3 

Hand pose classification results using SPORE. 

Table 4 

Hand pose classification results using RF Clf. 
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.5. Experimental validation using multiple pose dataset 

We use the multiple pose dataset to evaluate the extension

f our proposed staged probabilistic regressor for inferring both

and orientation and pose simultaneously. The MAE in degrees

or the single-fold evaluation using this extension and the com-

arison methods is presented in Table 2 . Fig. 10 (b) shows the

ercentage of data that lies under a given error in prediction for

PORE and the comparison methods. We notice that again, the

roposed SPORE outperforms the comparison methods that infer

and orientation and pose simultaneously. A paired t-test with

-value less than 0.05 shows that improvement in orientation
redictions using SPORE are statistically significant as compared

o the comparison methods. 

Furthermore, we compare the pose classification accuracy of

he proposed SPORE method with RF Clf that learns only the pose

lassification. We present confusion matrices for these results in

ables 3 and 4 , respectively. It can be seen that the proposed

PORE method outperforms an RF Clf for the pose classification

ask. This is due to the presence of the additional orientation

nformation that the SPORE method uses to learn both hand ori-

ntation and pose simultaneously. The comparison RF Clf method

acks the orientation information, which is why it is unable to

ifferentiate the poses with variations in orientation. In Fig. 14 we

resent the samples that are misclassified by RF Clf due to the

bsence of orientation information. These results let us understand

he importance of hand orientation in hand pose classification

n 2D images. We note that when such orientation information

s not present, then the classifiers have difficulty in hand pose

lassification under varying viewpoint. 

This paper focuses on using SPORE for hand orientation and

ose inference. We observe that the proposed method is general-

zable to other domains. SPORE can be used with any probabilistic

egressor or classifier, where the dataset contains large variations

hat are not fully captured with a single model. 
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Fig. 14. Hand poses that are correctly inferred by the proposed SPORE method but 

misclassified by RF Clf. (a) shows χ1 poses incorrectly classified as χ3 , (b) shows χ2 

pose incorrectly classified as χ3 , (c) shows χ3 poses incorrectly classified as χ4 and 

(d) shows χ4 incorrectly classified as χ3 by the RF Clf comparison method. Green 

arrows show the GT orientation information that is used by SPORE to correctly infer 

the hand pose. This orientation information is not used for RF Clf training. 
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7. Conclusion 

We proposed a staged probabilistic regression method that is

capable of learning well from a number of variations within a

dataset. The proposed method is based on multi-layered Random

Forest, where the first layer consisted of a single marginalization

weights regressor and second layer contained an ensemble of

expert learners. The expert learners are trained in stages, where

each stage involved training and adding an expert learner to the

intermediate model. After every stage, the intermediate model

was evaluated to reveal a latent variable space defining a subset

that the model had difficulty in learning from. The subset was

used to train the next expert regressor. The posterior probabil-

ities for each training sample were extracted from each expert

regressors. These posterior probabilities were then used along

with a Kullback–Leibler divergence-based optimization method

to estimate the marginalization weights for each regressor. A

marginalization weights regressor was trained using Contour

Distance Features and the estimated marginalization weights. We

showed the extension of our work for simultaneous hand orienta-

tion and pose inference. The proposed method outperformed the

state-of-the-art for the marginalization of multi-layered Random

Forest, hand orientation inference and Boosting. Furthermore, we

showed that a method which simultaneously learns from hand

orientation and pose outperforms pose only classification as it

is able to better understand the variations in pose induced due

to viewpoint changes. Our future work focuses on introducing a

bigger vocabulary of hand poses, application of SPORE in other

domains and the introduction of a temporal coherence method

that addresses the symmetry problem. Exploring effective CNN ar-

chitectures for simultaneous hand orientation and pose estimation

is another interesting future direction for our work. 
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