

PROPEL: Probabilistic Parametric Regression Loss for Convolutional Neural Networks

Muhammad Asad, Rilwan Basaru, S M Masudur Rahman Al Arif, and Greg Slabaugh

Motivation

Learning the mapping of 2D images onto 3D orientations defined by two hand orientation angles

Ambiguity in hand orientation regression dataset results in:

• Symmetry problem:

opposite orientation $\leftarrow \rightarrow$ similar hand shapes

- Existing regression methods try to fit into the data
- Overcome using probabilistic regression

<u>Contributions</u>

- Enable CNNs to learn parameters of a mixture of Gaussians probability distribution
- Fully-differentiable ightarrow analytic closed form solution ightarrow works with standard optimizers
- Generalizable to \rightarrow higher dimensional targets \rightarrow multi-modal distributions
- Better generalization with 10x less model parameters

PROPEL

Ground Truth Distribution

$$L = -\log\left[\frac{2\int P_{gt}P_m \, d\mathbf{\underline{x}}}{\int (P_{gt}^2 + P_m^2) \, d\mathbf{\underline{x}}}\right]$$
$$P_{gt}^k = \underbrace{e^{-\frac{1}{2}\left[\frac{(x_1 - \mu_{x_{1k}})^2}{\sigma_{x_{1k}}} + \dots + \frac{(x_n - \mu_{x_{nk}})^2}{\sigma_{x_{nk}}}\right]}_{(\sqrt{2\pi})^n \sqrt{\sigma_{x_{1k}} \cdots \sigma_{x_{nk}}}}, \quad P_m = \frac{1}{I} \sum_{i=1}^{I} \frac{e^{-\frac{1}{2}\left[\frac{(x_1 - \mu_{x_{1i}})^2}{\sigma_{x_{1i}}} + \dots + \frac{(x_n - \mu_{x_{nk}})^2}{\sigma_{x_{ni}}}\right]}}{(\sqrt{2\pi})^n \sqrt{\sigma_{x_{1k}} \cdots \sigma_{x_{nk}}}},$$

Model Output Distribution

<u>Results</u>

Head Orientation Estimation